PROBLEMAS DE QUÍMICA

CÁLCULOS ESTEQUIOMÉTRICOS

Problema346: Calcula los gramos de bromuro de plata que precipitan al reaccionar 40,0 mL de disolución de ión Br⁻ 0,50M con 25,0 mL de disolución de ión Ag⁺ 0,75M.

Escribimos la ecuación química ajustada, debajo los moles de las sustancias y debajo el dato y la incógnita del problema, pero si nos dan dos datos debemos determinar cuál es el reactivo limitante, es decir, el que está en menor proporción:

$$Br^- + Ag^+ \rightarrow AgBr$$

1 mol 1 mol 1 mol

Para saber cuál es el reactivo limitante basta saber el número de moles de cada sustancia, en el caso de que los coeficientes estequiométricos sean todos unidad, si no es así dividimos el número de moles entre el coeficiente estequiométrico para que sean comparables.

$$\frac{n_{Br}}{coef.} = \frac{0.5M \cdot 0.04L}{1} = 0.020 \qquad \frac{n_{Ag+}}{coef.} = \frac{0.75M \cdot 0.025L}{1} = \underbrace{0.0188}_{}$$

La sustancia que presente el valor más bajo de este cociente será el reactivo limitante, en este caso es el Ag⁺. Una vez que sabemos cuál es el reactivo limitante hacemos los cálculos sólo con esta sustancia, nos olvidamos de la otra que estará en exceso.

$$M_m(AgBr) = 107,9g + 79,9 = 187,8g$$

$$Br^- + Ag^+ \rightarrow AgBr$$
 1 mol 1 mol 1 mol 187,8g
$$0,0188mol \qquad x \ (g)$$

Las cantidades de las sustancias que participan en una ecuación química son magnitudes directamente proporcionales. Si tenemos más reactivo obtendremos más producto. Resolvemos con una proporción o utilizando factores de conversión:

Método a) Proporción:

$$\frac{x (g) AgBr}{0,0188 mol Ag^{+}} = \frac{187,8g AgBr}{1 mol Ag^{+}} \qquad x = \frac{187,8g AgBr \cdot 0,0188 mol Ag^{+}}{1 mol Ag^{+}} = \frac{3,53g AgBr}{2000 mol Ag^{+}} = \frac{3,53g A$$

Método b) Factores de conversión:

Partimos del dato y llegamos a la incognita a través de la relación entre los moles

$$0.0188 \text{mol Ag}^{+} \cdot \frac{1 \text{ mol AgBr}}{1 \text{ mol Ag}^{+}} \cdot \frac{187.8 \text{ AgBr}}{1 \text{ mol AgBr}} = \frac{3.53 \text{ g AgBr}}{1 \text{ mol AgBr}} = \frac{3.53 \text{ g AgBr}}{1 \text{ mol AgBr}}$$